Using Challenge Problems To Accelerate Biometric Technology

Dr. P. Jonathon Phillips

National Institute of Standards and

Technology

Technology Progress 1996 2000 FEREN Facial Recognition Vendor Test_2000Development 2002 ACE RECOGNITION **VENDOR TEST 2002** • 17 Years 1993 8 Evaluations • 5 Challenge Problems (Technology Development) 2010 2003 • 3 Biometrics **MBE** 2009 • 150,000+ Facial and Iris **Images** 2009 2005 **FACE RECOGNITION VENDOR TEST** 2006

Improved FR Performance

Single Still
Controlled
Different Days

Advancing Technology and Methodology

Challenge Problems

- What are challenge problems?
 - A series of experiments designed to advance a technology's state-of-the-art
 - Experiments designed
 - Experiments and test data distributed to researchers
 - Researchers complete experiments and submit results
 - Scores are consolidated and reported
 - Introduction of new technology

What Is A Challenge Problem?

- Challenge Problem
 - Open book
- Components—made available to participants
 - Data sets
 - Experiments
 - Ground truth
 - Baseline algorithm
- Similarity Matrices Submitted
 - Generated by participants
 - Scored by NIST
- NOT an independent Evaluation
 - NO sequestered data

Ideal Challenge Problem

Challenge Problem Sin: Too Easy

Challenge Problem Sin: Too Little Time

Today Progress / Performance Time **Difficulty**

Evidence of Progress through FRGC

Carnegie Mellon Innovation

Building a Challenge

- Goals—Simple and grandiose
- Setting goals—Cheat
- Complete infrastructure for challenge problems
- Open to all

Expanding Technology

What Does Expanding Technology Do For You?

- Development of new or improved technology
- Focus research on challenge problem
- Large community working on problem
- Solutions from novel approaches

Example of Expanding Technology: Recognition from Unconstrained Video

Still versus Video

Video versus Video

Expanding Science

What Does Expanding Science Do For You?

- Increases fundamental knowledge of biometric modalities.
- Human and computer performance
- Covariate analysis
- Analysis of results on large data set
- Underlying properties of a biometric

Example of Expanding Science: Iris Biometric Stability

Motivation

 Iris biometrics assumption: The iris is stable throughout one's life. Is this claim accurate?

Introduction

- 23 subjects
 - 46 irises
 - Collected 2004 through 2008.
- Three iris recognition algorithms
 - IrisBee baseline algorithm
 - ICE 2006 Algorithm B
 - VeriEye

Experiment

- Computed match (genuine) scores
 - for images acquired less than 120 days apart (short-time-lapse).
 - for images acquired more than 1200 days apart (long-time-lapse).
- Compared short-time-lapse and long-time-lapse
 - Mean of match score distribution
 - Median of match score distribution

Results

- IrisBee Algorithm
 - 43 of 46 irises showed degradation, p-value = 2.311×10^{-10}
 - mean match score
- ICE 2006 Cambridge Cam-2 Algorithm
 - 38 of 46 irises showed degradation, p-value = 9.2477 × 10⁻⁶
- VeriEye Algorithm
 - 40 of 46 irises showed degradation, p-value = 3.103×10^{-7}

IrisBee

ICE 2006 Cam-2

P P P

Iris Stability

- First study
 - One sensor
 - Limited subjects
- Recommend further studies
- Template aging as observed in other biometrics
- Multi-lab criteria

Conclusions

- Biometric technology has experienced significant progress over the last 15 years.
- Challenge Problems are Key for advancing the 'State of the Art'.
- Science is Key to advancing Technology.

Questions?

High Definition (HD) Video Camera

Near Infrared (NIR) Video Cameras

